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ABSTRACT 
People using white canes for navigation find it challenging 
to concurrently access devices such as smartphones. Build
ing on prior research on abandonment of specialized devices, 
we explore a new touch free mode of interaction wherein a 
person with visual impairment can perform gestures on their 
existing white cane to trigger tasks on their smartphone. We 
present GesturePod, an easy-to-integrate device that clips on 
to any white cane, and detects gestures performed with the 
cane. With GesturePod, a user can perform common tasks on 
their smartphone without touch or even removing the phone 
from their pocket or bag. We discuss the challenges in build
ing the device and our design choices. We propose a novel, 
efficient machine learning pipeline to train and deploy the 
gesture recognition model. Our in-lab study shows that Ges
turePod achieves 92% gesture recognition accuracy and can 
help perform common smartphone tasks faster. Our in-wild 
study suggests that GesturePod is a promising tool to im
prove smartphone access for people with VI, especially in 
constrained outdoor scenarios. 
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Figure 1: GesturePod. Top image shows the pod attached to a white 
cane. Bottom left image shows the close-up view of the pod. Bottom 
right image shows the interior of the pod. 

GesturePod code available at https://aka.ms/GesturePod 
For readers interested in learning more details of the ML technology 
underlying our work, refer to our technical report [6]. 

INTRODUCTION 
Smartphones have become an integral part of our lives. While 
new technologies and applications on the smartphone have 

improved the lives of all people, smartphones have signifi
cant potential to positively impact the lives of people with vi
sual impairments (VI). Mainstream apps such as ride-hailing 
and maps are beginning to combat the accessibility barriers. 
Furthermore, recent smartphone apps such as Seeing.AI [33], 
Soundscape [32], and Eye-D [42] allow people with VI to be 
more aware of and better navigate their surroundings. These 
apps provide a glimpse of the exciting possibilities that smart-
phones can offer people with VI. 

Despite these benefits, smartphone accessibility remains a 
challenge. A prior study [22] has shown that the user inter
faces for mobile apps can be cumbersome to use for people 
with VI. Furthermore, for users with VI who use a cane for 
navigation, there are many situations where even accessing or 
locating the smartphone in a timely manner can be difficult. 
Figure 2a shows one such situation where both the hands of a 
person with VI are occupied - one hand with a cane and the 
other hand with a coffee mug. In this paper, we focus on this 
problem of accessibility to a smartphone in constrained set
tings. We particularly emphasize on the Global South, where 
people living with disabilities often have lower incomes [36] 
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and typically cannot afford expensive accessibility technolo
gies, e.g., smart watch. 

One way to improve access to the phone without any addi
tional devices is to use voice commands. Unfortunately, voice 
commands are not always effective (e.g., noisy environments) 
and not always desirable due to privacy reasons [48]. In ad
dition, many languages in the world do not yet have good 
voice command support. On the other hand, prior works have 
proposed wearable devices such as rings [1] and dials [23] to 
improve access to the phone. However, such devices are not 
effective when both hands of the user are occupied. 

Given that most people with VI use a white cane for naviga
tion, prior works have proposed to augment the white cane 
with buttons [4] or a touchpad [44] to allow a person with 
VI to more easily interact with their smartphone. However, 
these solutions significantly modify the cane handle and re
quire the user to change their normal grip, which is highly not 
desirable. Moreover, touchpad-based solutions significantly 
increase the weight and cost of the the white cane. In an in
formal conversation, Saqib Shaikh, the founder of Seeing.AI 
[33] and a white cane user himself, commented: 

I am not a fan of devices which put the electronics in 
the cane handle, making it heavy and bulky. I like the 
ergonomics of my existing cane. ... Since I like to change 
my cane every year or so, I would prefer a device that 
can be easily moved to a new cane. 

In this work, we explore a new mode mode of converting the 
white cane into an interaction device that is complementary 
to prior approaches—performing gestures using the cane. As 
gestures are natural, and relatively easy to learn and perform, 
they offer a promising avenue for interaction. However, for 
such a solution to be practical, we must 1) design the gestures 
such that they do not interfere with the normal can usage, 
2) ensure that the solution can be adapted to any cane, 3) en
sure minimal increase in the weight of the cane, 4) any device 
lasts at least an entire day, and 5) the gestures are recognized 
in a wide variety of settings (e.g., users, flooring). To cater to 
users in low-income settings, we also require the cost of the 
solution to be as low as possible. 

The main contribution of this work is the GesturePod, a de
vice that can be clamped on to any white cane making the 
cane a gesture-based interaction device (Figure 1). To reduce 
cost and weight, GesturePod uses a low-cost, lightweight 
microcontroller, off-the-shelf sensors (accelerometer + gyro
scope), a BLE module for communication, and a small bat
tery. We design five gestures that are intuitive and do not 
interfere with normal cane usage (described in Figure 2b
f). To reduce power consumption and robustly recognize 
the gestures, we carefully designed a machine learning (ML) 
pipeline that allows GesturePod to run the gesture recognition 
fully on the microcontroller. Overall, GesturePod costs less 
than 10 USD, weighs 49 g, continuously runs for 28 hours on 
a single charge and accurately recognizes the gestures in the 
real world across a range of users and environments. 

To enable deployment of our ML algorithm on the microcon
troller, we designed novel features and exploit recently pro

posed ProtoNN algorithm [13]. Our ML pipeline consists of 
1) a simple methodology to collect training data for gestures, 
2) tools to automatically curate the collected data and train 
the ML model, and 3) an optimized code that runs the trained 
model on the microcontroller. This pipeline allows addition 
of new gestures or replacement of existing gestures. For ex
ample, two high-school students added a sixth gesture to our 
GesturePod after playing with it for a day. 

Based on exploratory interviews, we designed an Android 
app that maps gestures on the cane to common smartphone 
tasks. To understand the usefulness and adaptability of Ges
turePod based cane, we conducted two sets of user studies: an 
in-lab study, and an in-wild study. Our user studies indicate 
that 1) users learn to use the GesturePod with just 10 minutes 
of training, 2) it can detect gestures with 92% accuracy across 
multiple users and environments, and 3) it can significantly 
improve the time to perform common smartphone tasks, es
pecially in constrained settings. 

Our paper makes the following contributions. 

•	 We design GesturePod, an easy-to-integrate device that can 
be clamped on to any white cane and recognize a range of 
gestures performed on the cane. We solve several techni
cal challenges to make GesturePod robust, power-efficient, 
lightweight, and inexpensive. 

•	 We develop an ML pipeline to detect easy-to-perform yet 
non-trivial-to-recognize gestures in many environments on 
battery-powered microcontroller. 

•	 Our in-lab user study indicates that GesturePod can accu
rately recognize gestures across a range of users and set
tings, and significantly reduce the time to complete com
mon smartphone tasks. 

•	 Feedback from users in our in-wild study indicates that us
ing gestures on the white cane is a promising method for 
interacting with smartphone. 

RELATED WORK 
The goal of this work is to design a lightweight, low-cost 
device that can recognize gestures performed using a white 
cane. We divide related work into two categories: those that 
enhance the white cane with different goals, and those that 
propose gesture recognition. 

Enhancements to the White Cane 
Prior works have observed that the white cane is an important 
navigation device for people with VI [51, 45]. Williams et 
al. [46] extensively study various navigational challenges for 
people with VI. Kim et al. [18] highlight several key issues 
such as battery life and reaction time that one must consider 
when augmenting the white cane with electronics. 

There are two closely related works to ours. The first is that 
by Batterman et al. [4], who propose to augment the cane 
with a set of buttons to allow users to trigger actions on their 
smartphone. The second work is WeWalk [44] that replaces 
the cane handle with one that contains a touchpad. Both these 
solutions require the user to significantly change their grip 
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before performing the actions required to access their smart-
phone, which is not desirable. In fact, our informal discus
sions with potential users indicate that the they prefer touch-
free interaction mechanisms like gestures. 

Other prior works have added sensors like ultrasound sen
sors [39], camera [17], LIDAR [37], RFID tags [7, 11, 25], 
etc. to assist users with VI to detect obstacles. Connected 
Cane [40] augments the cane with sensors to enable fall de
tection and alert people in case of a fall. Some studies [10, 3, 
20] augment the cane with IMU sensors (accelerometer + gy
roscope) mainly to understand the usage pattern of the cane. 
These works do not aim to use the cane as an interaction de
vice to access the smartphone. 

Our approach of using gestures on the cane to interact with 
the smartphone addresses many of the challenges with prior 
works. Evaluation results from our studies validate this claim. 
Having said that, our solution can be easily integrated with al
most all these prior approaches to provide a richer experience 
for people with VI. 

Gesture Recognition 
Gesture recognition is an extensively-studied problem, espe
cially in the context of touch-free interaction systems [2, 24, 
47]. However, most existing gesture recognition solutions for 
accessibility use vision-based techniques [35, 38, 15, 34, 12]. 
In addition to incurring high cost and power consumption, 
these solutions require addition of cameras at specific orien
tations, thereby making them impractical in our scenario. 

Prior works have proposed mechanisms to use gestures on 
hand-based wearables as an interaction mechanism [8, 14, 21, 
26, 31, 19, 29]. These solutions use IMU sensors in wear
ables such as a watch [28], electromyography and accelerom
eter sensors on the hand [27], or a finger ring with IMU sen
sors [16]. Unfortunately, these solutions are ineffective for 
users with VI particularly in settings where both their hands 
are occupied. 

One key aspect of gesture recognition is the algorithm used 
for classifying gestures. Prior works have used hand-tuned 
rules to detect activities like running, sleeping [9], simple 
ML algorithms to recognize simple gestures in restricted set
tings [27], or expensive ML algorithms that are run on a pow
erful device [26]. However, none of these approaches suit 
our setting. On the one hand, rule-based algorithms or sim
ple ML models cannot robustly detect our set of gestures that 

are simple to perform yet complex to recognize. On the other 
hand, more powerful ML models [49, 30] will require our 
device to transmit all the signals to a more powerful device 
(e.g., the smartphone). As we will describe shortly, this ap
proach drains the battery on the device within a couple of 
hours, making it impractical. 

(a) Constrained environment (b) Double Tap (c) Right Twist (d) Left Twist (e) Twirl (f) Double Swipe 

Figure 2: (a) A visually impaired person in a constrained environment (both hands occupied). (b)-(f) Illustration of various gestures used in our study. 

DESIGN PRINCIPLES AND CHALLENGES 
In this section, we first describe the rationale behind our ap
proach of using gestures on the cane to interact with the 
phone. We then describe the key design constraints and chal
lenges in making this approach practical in the real world. 

Why Gestures on the Cane? 

Why Gestures? 
There are several reasons why gestures are better than other 
modes of interaction such as buttons or touchpads. First, 
as gestures are a natural mode of interaction, they are easy 
to learn and remember. In fact, all the users in our studies 
picked up the gestures with just ten minutes of training. Sec
ond, gestures are easy to perform. Mechanisms like buttons 
or touchpad require users to move their hands along the cane 
to first locate the device and then perform the necessary ac
tion. In contrast, users can perform gestures on the cane with
out even having to significantly change the grip with which 
they are holding the cane. Third, unlike buttons, adding new 
gestures only requires changes to the software and not the 
hardware. 

Why on the Cane? 
Besides the cane, locations that possibly have sufficient de
grees of freedom to perform a range of gestures are the user’s 
hands, fingers, head, and legs. As mentioned before, perform
ing gestures using hands and fingers is not feasible especially 
when both the user’s hands are holding objects. Performing 
gestures using the head or legs can potentially result in strain 
and sometimes even be dangerous. As prior works have ob
served [45, 50], the cane is a widely-used navigation device 
by users with VI. As a result, using the cane to perform ges
tures was a natural choice. 

Design Constraints and Implications 
Our goal is to design a gesture-recognition device that can be 
clamped on to any white cane without requiring further mod
ifications to the cane. There are four constraints that make the 
design of such a device technically challenging. 



1. Low Weight. As the device will be mounted on the cane, a 
large increase in the weight of the cane will affect the user’s 
regular cane usage. As a result, the device must be of low 
weight. Consequently, we cannot simply mount any heavy
weight device like a smartphone to the cane. This constraint 
also limits the size of the battery. 

2. Day-long Operation. Similar to other battery-operated 
electronic devices, we can only expect the user to put our de
vice to charge at the end of the day. With limited battery 
capacity, this constraint essentially translates to low power 
consumption. This not only limits us to low-power consum
ing devices, it also eliminates the option of transferring all 
the sensor data to the smartphone. The communication alone 
drains the battery within a couple of hours. 

3. Low Cost. As the focus of this work is on designing a 
solution that works for low-income users, the cost of the de
vice has to be low. This constraint restricts us to low-cost 
microcontrollers and off-the-shelf sensors. 

4. Robust Gesture Recognition. Finally, for the device to 
be practical, it must robustly recognize the set of gestures 
under a range of environments and users. This means low 
false positives as they can trigger unnecessary actions on the 
smartphone and low false negatives as high false negatives 
can make the system unusable. This constraint eliminates the 
option of using simple rule-based systems. In fact, even af
ter a month of effort, we were unable to create a rule-based 
system with low false positives and low false negatives. 

Technical Challenge 
The main conclusions from the above constraints are as fol
lows. First, our device can only use simple microcontrollers 
that incur low cost and power consumption. Second, since 
the sensor data cannot be transmitted to the smartphone due 
to battery limitations, the only option is to run the gesture 
recognition algorithm on the microcontroller itself and trans
mit only recognized gestures to the smartphone. Third, mi
crocontroller have very small amounts of compute and mem
ory resources. Therefore, as an added implication of the pre
vious point, we cannot use standard ML classifiers as they 
require large amount of compute and memory resources to 
make real-time predictions. 

So, the key technical challenge that we address is: 

Can we design a low-cost, low-power device that accu
rately and robustly recognizes a number of natural ges
tures in real-time using just a low-end microcontroller 
and off-the-shelf sensors? 

In the following section, we describe the design and im
plementation of GesturePod that successfully addresses the 
above challenge. 

GESTUREPOD: DESIGN AND IMPLEMENTATION 
GesturePod is a plug-and-play device that can be clipped onto 
any white cane and pairs with Android phones. The micro-
controller on board runs a machine learning model that infers 

cane gestures performed by the user in real-time. The ges
tures are communicated to the phone where they invoke spe
cific tasks (e.g. read out the time). The pod is also used for 
collecting labelled data necessary for training the ML model. 
We now describe design of the hardware and software com
ponents of GesturePod. 

Components of GesturePod 
GesturePod consists of five key electronic components (high
lighted in red in Figure 3): 1) an off-the-shelf Inertial Mea
surement Unit (IMU) — MPU6050, 2) an Arduino MKR1000 
board, 3) a Bluetooth Low-Energy (BLE) module, 4) a 
rechargeable battery, and 5) an on-off switch. The IMU con
tains an accelerometer and a gyroscope that capture data at 
a frequency of 200 Hz, and an internal buffer that can store 
100 ms worth of sensor data. The MKR1000 board consists 
of an ARM Cortex-M0+ microcontroller with 32 KB working 
memory and 256 KB of read-only flash. The microcontroller 
runs our entire gesture recognition pipeline. GesturePod 
uses the BLE module to communicate recognized gestures 
to a connected smartphone. The rechargeable battery has 
750 mAh capacity and powers all the above components. All 
these components are housed in a 76 mm×38 mm×25 mm 
casing with a clamp that allows us to mount GesturePod on 
any white cane. 

Figure 3: Components of GesturePod. 

Proposed Gestures on the Cane 
We designed our gestures such that a) they are easy to per
form, b) they are not accidentally triggered during natural 
cane use, and c) they map to common navigation tools for 
accessibility typically found in Android devices. Specifi
cally, we use the double swipe gesture for the select action, 
right twist for next, left twist for previous, and double tap for 
back/exit. For added functionality, we included a fifth ges
ture: twirl. We did not include single tap as a gesture as it 
gets triggered inadvertently too often during normal usage. 
The following list describes how each of these gestures are 
performed (pictorially shown in Figure 2). 

1. Double tap (D-T): Tap the cane on the floor twice 
2. Right twist (R-T): Twist the cane to the right 
3. Left twist (L-T): Twist the cane to the left 
4. Double swipe (D-S): Tilt the cane to the right twice 
5. Twirl (Tw): Make a circle with the cane’s grip 



While in this work, we focus on the above mentioned 5 ges
tures, adding a new gesture and/or replacing an existing ges
ture only requires a) collecting data points for the new ges
ture, and b) training a new model using our ML pipeline. We 
describe these steps in more detail in the following sections. 

Data Collection for Model Training 
To train our ML model, we need: 1) positive examples for 
each of the five gestures, and 2) negative examples where no 
gesture is performed. We used two different methods to col
lect, curate, and augment training data for each kind. 

Positive Examples for Gestures 
Seven sighted volunteers helped us collect training data for 
the five gestures. For each gesture, the volunteer performs the 
gesture using the cane mounted with the GesturePod, while 
an observer roughly marks the boundaries of the gesture in a 
program running on the computer. The program collects the 
sensor data using serial communication, labels it with the cor
responding gesture, and stores it in a database. To ensure ro
bust gesture recognition, our training data included variations 
in flooring, grip, orientation of the cane, and handedness. In 
total, we collected data for 102 double taps, 55 right twists, 
54 left twists, 353 twirls, and 83 double swipes. 

As the observer only approximately marked the boundaries 
of each gesture, we further curated the training data to en
sure same duration for each example. We observed that all 
the gestures could be performed within 1.5 seconds. So, we 
manually trimmed our training examples such that 1) each 
example had sensor data for exactly 2 seconds, and 2) the 
gesture is roughly centered within the 2-second window. We 
increase the training set size by ten-folds by adding additional 
examples where the region containing the gesture is shifted 
on either side by up to 25 ms at 5 ms steps. 

Negative Examples 
For the GesturePod to be usable, we must ensure that it does 
not falsely trigger any of our gestures during the normal use 
of the cane. While one can easily design a rule-based sys
tem to distinguish between our five gestures, engineering a 
rule-based system to avoid false positives in the numerous 
scenarios occurring in regular cane use is impractical. In fact, 
to significantly reduce the false positive rate in our ML-based 
model, we had to add three kinds of negative examples to our 
training dataset. 

First, we added negative examples from regular cane use 
without any gestures. For this purpose, we connected Ges
turePod to an SD-card to record all sensor data from the IMU. 
We attached the pod to a cane and asked our volunteers to 
walk around with the cane without performing any of the five 
gestures. We collected 8 minutes of such data and clipped it 
to generate 2-second segments of negative examples. 

Our initial model trained with just these negative examples 
resulted in high false positive rate. One of the major source 
of false positives was partial gestures, e.g., a single tap, that 
were recognized by the GesturePod as a full gesture. We 
found that these partial gestures occur frequently during natu
ral cane use. For instance, the “three-point” technique [41] to 

climb stairs involves a single tap on each step. To avoid these 
false positives, we retrained our model using negative exam
ples augmented with data from partial gestures, e.g., single 
tap, half a twist, etc. 

For the last round of data collection, we tagged any additional 
false positives generated by our model. For each instance, we 
extracted the corresponding sensor data and included it in our 
dataset as a negative example. 

Machine Learning Pipeline 
Our goal is to train a ML model that can take a continuous 
stream of data from the IMU sensors and detect occurrences 
of gestures. However, similar to the training examples, we 
cannot simply segment the sensor data stream into disjoint 2
second windows and run the model on each window. This is 
because a gesture performed by the user may cut across two 
consecutive windows as shown in Figure 4a. To mitigate this 
issue, we generate overlapping 2-second windows by sliding 
windows by 100 ms so that there is at least one window that 
encompasses the full gesture—e.g., in Figure 4b, window Wk 
contains the full gesture. 

(a) Disjoint windows (b) Overlapping windows 

Figure 4: Striding Windows— w1 and w2 are disjoint windows in (a), 
while they are overlapping in (b). The 2s window that contains the ges
ture is highlighted. 

At the beginning of every sliding window (i.e. every 100 ms), 
the microcontroller must 1) fetch the IMU sensor data for 
the past 100 ms, 2) run the ML prediction on the latest 2
second window, and 3) communicate any recognized gesture 
to the smartphone. Steps (1) and (3) consume roughly 20 ms. 
Therefore, ML prediction must complete within 80 ms. 

An ML predictor typically consists of two parts: 1) data fea
turization that converts raw sensor data into features that are 
suitable for the ML model, and 2) a classification algorithm 
that classifies the featurized data into one of the gestures (in
cluding no gesture). 

For our classification algorithm, we use the multi-class for
mulation of the recently-proposed ProtoNN [13] algorithm 
which is specifically designed to generate models small 
enough to run on microcontrollers. However, when we em
ployed ProtoNN with standard ML features (e.g., FFT fea
tures [5], clustering-based features [43]), it exceeded the time 
budget due to data featurization cost. Therefore, we had to 
design a set of features that 1) are easy enough to compute, 
2) consumes small amount of memory, and 3) are still robust 
enough to be able to discern practical gestures. 

Our Proposed Features 
As mentioned before, the featurization step converts raw sen
sor data into a set of features. The raw sensor data consists 
of six dimensions, three each from the accelerometer and the 
gyroscope. For 2-seconds, when sampled at 200 Hz, the raw 



data for each prediction instance consist of 400 values in each 
of the six dimensions. 

We design two kinds of features. First, for each of the 6 di
mensions, we group the 400 values into 20 equally-spaced 
bins in their range and count the number of values in each 
bin. Such equally-spaced bin counts are particularly efficient 
to compute in our striding-window setting. Second, bin count 
features discard phase in the gyroscope values (clockwise vs. 
anti-clockwise). Specifically, we need the phase information 
along the vertical axis of the cane to distinguish between the 
two twist gestures. To capture this information, we add four 
additional features: the index and length of the longest posi
tive and negative sequence of gyroscope values along the ver
tical axis of the cane. In total, we compute 124 features for 
each training sample. 

Model Training 
With these new set of features, we trained a ProtoNN model 
on our dataset using a commodity PC. We randomly split the 
collected training dataset into 80% training samples and 20% 
testing samples. We tuned the ProtoNN hyper-parameters si
multaneously to achieve high accuracy and low model size. 
Our final model is just 6 KB in size and achieves an accuracy 
of 99.9% on the test data. 

Prediction Pipeline 
The gesture prediction pipeline runs a continuous cycle of 
(a) data collection from IMU, (b) feature computation, (c) 
ProtoNN inference algorithm on the model generated by the 
ProtoNN training algorithm and (d) BLE communication for 
relaying the gestures detected to the phone. With our new 
feature set and the 6 KB ProtoNN model, the microcontroller 
can complete data featurization and the ML classification in 
27 ms and 16 ms, respectively. 

To reduce false positives, we use a secondary filter wherein 
our algorithm keeps track of the latest n predictions. If the 
majority of the these predictions point to a particular ges
ture, then our algorithm confirms the presence of that gesture 
and communicates the gesture to the smartphone. Due to the 
100 ms stride between prediction windows, each instance of a 
gesture is typically contained in 4 to 6 consecutive windows. 
Therefore, we set n = 6. Including this step, the microcon
troller executes the entire prediction pipeline well within the 
time budget of 100 ms (see Figure 5). 

Collect 
data from 

IMU 
(20 ms) 

Compute 
features 
(27 ms) 

Predict 
gesture 
(16 ms) 

Gesture 
confirmed? 

Send ges
ture to BLE 

module (1 ms) yes 

no 

Figure 5: Prediction pipeline loop that runs on the single-threaded mi
crocontroller (must finish in 100 ms). 

GesturePod: Hardware Evaluation 
As discussed before, our goal is to design a robust gesture-
recognition device that incurs low cost, low weight, and low 
power consumption. The GesturePod achieves this goal. 
First, the GesturePod costs around 10 USD, which is signifi
cantly lower than the cost of other accessibility devices (e.g., 
smartwatch). Second, GesturePod weighs just 49 g. None of 
the users in our studies had any complaints about the weight 
of the pod. Having said that, the weight of our design can be 
further reduced through a tighter integration of the individual 
components. Third, Table 1 shows the power consumption of 
each component of the pod. Assuming that the user performs 
a gesture once every 100 ms, the pod lasts over 21 hours on 
a single charge. In all our studies, all the users reported that 
the battery lasted an entire day. Finally, results from our user 
studies show that the GesturePod robustly and accurately rec
ognizes gestures performed by a number of users. 

Table 1: Power consumption of each component of the GesturePod. 

Component Power Consumption 

Microcontroller (MKR1000) 66 mW 
IMU sensor (MPU6050) 19.8 mW 
BLE (sleep mode) 1.98 mW 
BLE (transmission mode) 29.67 mW 

Android App 
We conducted exploratory interviews with 15 volunteers with 
VI to understand the set of smartphone tasks that can ben
efit from access via gestures (these users did not participate 
in our future studies). Users wanted gestures to trigger core 
tasks such as reading current time and location, responding to 
phone calls, reading notifications, and integration with apps 
like WhatsApp, Uber, Maps, etc. (We provide more details of 
these interviews in the supplementary material.) As our goal 
with this initial study is to understand if cane gestures are 
a good mode of interaction, we avoided working with third-
party applications and focused on the core tasks. 

We mapped a set of core tasks to a simple state machine. We 
mapped gesture to state transitions to simulate a typical nav
igation flow in Android. For instance, left twists and right 
twists are used to scroll forward and backward through the 
app menu or notifications list, and the user can double tap at 
any time to return to the home state, much like a home button 
on android phones. Figure 6 shows the state transition dia
gram. We designed an Android app to implement this state 
machine. The app gives users voice feedback through their 
phone’s speakers of earphones. We observed that our users 
with VI tend to always have one of their earphones in their 
ear, and they preferred voice feedback through earphones. 

IN-LAB STUDY 
We conducted an in-lab user study to quantitatively evaluate 
the robustness and effectiveness of the GesturePod. Specif
ically, we conducted experiments to 1) measure how ac
curately the GesturePod recognizes gestures performed by 
users, and 2) measure the effect of using the cane mounted 
with GesturePod (henceforth referred to as I-Cane) on the 



time taken by users to complete specific tasks on their smart-
phone. In addition to these measurements, we collected feed
back on the usability of the cane on a Likert scale (see sup
plementary material). 

For this study, we recruited 12 users with VI from three Non-
Government Organizations (NGOs). All users had received 
mobility training to use the white cane. Among users, we had 
diversity in terms of qualifications, gender, age, and handed
ness. Eight had owned a smartphone for at least three months. 
Based on consultation with the NGOs and our Institutional 
Review Board, we compensated each user 7 USD, which is 
roughly a day’s minimum wage for a skilled worker. 

Tw [location] D-T [time] L-T 
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Notifications
Speed 

Dial Menu 

Speed Dial 

RecorderRecording 
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D-T 
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(call contact) 

if end of notifications: 
clear all notifications 
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Figure 6: State machine for the app on smartphone. During state tran
sitions, the app explicitly reads out the text corresponding to the item 
within square brackets. 

Accuracy of GesturePod 
All 12 users took part in this experiment. We first trained 
users on how to perform the five gestures, and then measured 
the accuracy of GesturePod in recognizing the gestures per
formed by users. For this experiment, to prevent human bias, 
we designed an Android app that speaks out a random gesture 
and waits for the user to perform the gesture with the I-Cane 
for a period of 10 seconds. We used this app for both train
ing and the subsequent accuracy measurement. Each user 
brought their own cane for both the in-wild and the in-lab 
study. The GesturePod was clamped to their cane. In fact, the 
ability to simply attach the GesturePod to any white cane was 
one of our key design requirements. 

User Training 
We first described the project to users. Then, we held their 
hands and demonstrated how to perform each gesture once. 
After this initial demonstration, we used our app to train the 
users where the app requests the user to perform each ges
ture 5 times. For each attempt, the app notifies the user if 
GesturePod recognized the gesture. The training lasted 10 
minutes for each user. 

Accuracy Measurement and Metrics 
After the training phase, we use our app to measure the ges
ture recognition accuracy of GesturePod for each user. The 
app reads out 25 gestures (5 instances of the 5 gestures) in 
a random order for each user, and tracks if GesturePod cor
rectly recognized the gesture. We measure accuracy for each 
gesture using two metrics: 1) recall, the fraction of times the 

performed gesture was detected correctly, and 2) precision, 
the fraction of times GesturePod’s detected gesture was cor
rect. A high recall is an indicator of low false negatives, and 
high precision is an indicator of low false positives. 

Performed 
Gesture 

Recognized Gesture 

D-T R-T L-T Tw D-S N-G Recall 

D-T 95 0 0 0 0 0 1 
R-T 0 86 8 0 0 1 0.91 
L-T 0 9 81 0 0 5 0.85 
Tw 0 0 0 82 11 2 0.86 
D-S 0 0 0 1 93 1 0.98 

Precision 1 0.91 0.91 0.99 0.89 

Table 2: Confusion matrix for gesture detection performed across all 
visually impaired users. N-G corresponds to the case when no gesture 
was recognized. 

Results and Discussion 
Table 2 presents the results of our experiment. The i jth value 
in the table is the number of times a gesture in the ith row is 
detected as a gesture in the jth column. We draw three con
clusions. First, GesturePod recognizes double tap (D-T) and 
double swipe (D-S) with high recall. Second, we observed 
that while listening to the prompt of gesture to be performed, 
users sometimes got confused between right and left direc
tionality. For example, on hearing a prompt for right twist 
they would commit to perform a left twist and then quickly re
alize and perform right twist. However, in our evaluations, to 
be fair, our system considered only the first gesture performed 
after the prompt. Despite this factor, the recall for right twist 
(R-T) and left twist (L-T) is still around 86%. Third, as a twirl 
(Tw) performed incorrectly has a signature similar to double 
swipe (D-S), the model sometimes mispredicts a twirl as a 
double swipe. 

Overall, across all gestures, GesturePod achieves a precision 
of 92%±3% (with 95% confidence). Note that our ML model 
was not trained with data from these users. The fact that we 
were able to detect gestures even for new-users, highlights 
the robustness and generalizability of our ML-based gesture 
recognition model. 

Impact on Smartphone Access Time 
Through this experiment, we want to analyze the impact of 
the I-Cane on time taken to complete common activities on 
the smartphone. 8 users with VI participated in this exper
iment. All participants from the previous experiment who 
owned a smartphone for at least three months were enrolled 
for this experiment. We studied the following five activities. 

1. Answer a phone call from a test phone. 
2. Call back the last caller from a missed call notification. 
3. Start an audio recording and stop. 
4. Know the current geographic location. 
5. Check for notifications and read out the time. 

Based on the feedback from our exploratory interviews, we 
identified two experimental settings: an unconstrained set
ting, in which one of the user’s hands is free and the other 
hand is holding the cane, and a constrained setting in which 
both of the user’s hands are occupied–one hand holding the 



cane and the other hand holding an item (e.g., a bag). Apart 
from whether one of the users’ hand was free, there were no 
differences between the two settings. 

User Training 
At the beginning of this experiment, we read out the state ma

Evaluation 
We measure the time taken by each user to complete the 
five activities in four different scenarios: constrained or un
constrained, and smartphone-alone or I-Cane. To eliminate 
“competition effect”, we did not a priori inform the partici
pants that we will be timing them. Instead, we video record 
the experiment and replay the video to measure the time after 
the study (participants were informed post study). To elim
inate “practice effect”, across users, we randomize 1) the 
order of these scenarios, and 2) the order of the activities 
within each scenario. For the smartphone-alone scenarios, 
participants used their preferred mode for interacting with the 
smartphone — such as touch UI, querying voice commands 
(e.g. "Okay-Google"), assistive app technology (e.g. "EYE
D" Android app), accessibility mode, etc. 
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Figure 7: Speedup in task completion times using I-Cane over using 
smartphone alone. 

chine (in English/native language) (Figure 6) that maps ges
tures on the I-Cane to activities on the phone, to each user. 
We present the exact text used in the supplementary material. 
The users then practiced the activities using the I-Cane once. 

Results and Discussion 
When using the I-Cane, all the users were able to complete 
all the activities in both the unconstrained and constrained 
settings. In contrast, some users were unable to complete 
some of the activities using the smartphone-alone. Specifi
cally, three users were unable to complete the recording ac
tivity in both unconstrained and constrained settings; and one 
user was unable to identify the location and read out notifica
tions in the constrained setting. 

Figure 7 plots the average speed-up in task completion times 
using I-Cane compared to the smartphone-alone for each of 
the five activities across all the users, along with the stan
dard deviation. While computing speedup, we exclude data 
points where a user was unable to complete the activity on the 
smartphone-alone. 

We draw two conclusions from our results. First, in both 
unconstrained and constrained settings, users were able to 
complete tasks 2×–9× faster using I-Cane than using their 
smartphone-alone. Second, as expected, the speedups are 

Figure 8: Number of gestures performed by users on the days we de
tected at least one gesture. 

slightly higher in the constrained setting, especially for the 
location task. For the location task, most users had to 
navigate multiple screens to identify the location using the 
smartphone-alone, whereas, with the I-Cane, they could com
plete the task with a single gesture. 

While one user successfully used Google voice commands to 
complete some tasks, other users stated that they generally do 
not prefer voice commands for various reasons: 

1. “I reside in a hostel with other blind people. If all of us
start talking to use the phone, there would be a mess.”

2. “It does not recognize vernacular accents.”
3. “On the streets, with the honking and noise, it does not

recognize our voices.”

IN-WILD STUDY 
To understand the usefulness and adaptability of GesturePod 
in the real-world, we conducted a 15 day in-wild user study. 
We recruited three users with visual impairment from two 
NGOs. All three users had received mobility training and use 
a smartphone. One of the users had participated in our in-lab 
user study. 

We briefed each user about GesturePod and trained them to 
perform the gestures and their effect on their Android phones. 
Additionally, we trained each user on the operation of Ges
turePod, switching it on/off, charging it, and connecting it 
to their phone. We attached GesturePod to each user’s cane 
and connected the pod to their phone. Following this train
ing, we informed the user that, for the remainder of the study, 
they could interact with their phone either using their nor
mal method or through gestures on the cane, whichever they 
deemed fit. We did not initiate contact with the users until the 
end of the study. 

Evaluation Metrics 
During the study, our app logged all the gestures performed 
by the user. At the end of the study, we collected feedback 
from each user in three ways: 1) System Usability Scale 
(SUS) to measure usability of the system, 2) Likert scale re
sponses on the design of the system, and 3) semi-structured 
interviews. We recorded, transcribed, and analyzed the in
terviews to identify emergent themes. To prevent response 
biases, an independent individual not part of our project col
lected the SUS and Likert scale responses. 
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Quantitative Results 
Figure 8 plots the number of gestures we detected for each 
of the three users (P1—P3). As there was a high variance 
in the number of gestures across users (possible due to dif
fering phone usage), the figure plots the number of gestures 
in log scale. In addition, during our interviews, we learned 
that the users did not use their cane on days they were with 
their family members due to social stigma (see next section). 
Therefore, we plot the number of gestures for each user only 
for days on which we detected at least one gesture (Break-up 
of gestures per user per day provided in supplementary mate
rial). Our results show that each user used the cane on at least 
11 days out of 15 days of study, and each user’s median num
ber of gestures performed was more than 58. We noticed that 
P3 performed a large number of gestures on day 5. During 
our interviews, he told us that he had demonstrated the cane 
to his students on that day. 

As our app cannot distinguish between a real (intended) ges
ture and a false positive, to track false positives — we asked 
users if they experienced any false positive during their cane 
use. Two of the users mentioned occurrences of few false pos
itives across all 15 days: P1 (4 false double taps) and P2 (20 
false double swipes). These numbers are small in comparison 
to the total number of gestures performed by the users. More 
importantly, the users did not report significant inconvenience 
due to false positives. 

Users gave positive feedback on the System Usability Scale: 
P1–90, P2–75, and P3–95. The responses for the Likert scale 
were also encouraging. We provide the exact questions for 
SUS and the anchors for the Likert scale in the supplementary 
material. Table 3 shows the responses for the Likert scale. 

These results indicate that our approach of using gestures 
on the cane to interact with the smartphone can be robust, 
promising, and potentially useful in the real world. 

Question P1 P2 P3 
Was performing the gestures comfortable? 3 5 5 

Were the gestures intuitive to perform? 5 5 5 

Was the cane able to detect your gestures 
accurately? 3 4 4 

How easy did you find it to remember the 
gestures? 5 5 5 

How much effort was required to get used to 
the way the gestures are to be performed? 5 4 5 

How would you rate ease to use and operate 
the app? 4 5 4 

How would you rate the physical design of 
the pod? 5 5 5 

How would you rate the overall product ex
perience? 3 4 5 

Table 3: User ratings from in-wild study on different aspects of Gesture-
Pod. Rating: 1 - lowest, 5 - highest. 

Qualitative Feedback 
We conducted semi-structured interviews with users at the 
end of the study. In general, the users found I-Cane to be 
most useful in constrained scenarios. In contrast, it was least 
useful when the users were with their family members, due 
to limited requirement of independent navigation as well as 
due to social stigma. All the users mentioned that they did 
not feel any strain while performing the gestures, and the pod 
(and its weight) did not effect their normal cane usage. 

Constrained Scenarios 
All users reported I-Cane to be helpful in constrained sce
narios, i.e., when both their hands were occupied. One such 
scenario is during the use of public transit, where seating is 
often unavailable. A common challenge in such situations 
is having to balance oneself by holding on to a railing. The 
exact moment of a cellphone vibrating can be jarring and dis
tracting, and trying to remove it from one’s pocket or bag and 
operate it can cause tripping and injury. 

When I was traveling by metro, holding the cane in one 
hand and the railing (support) in the other hand. I am 
getting calls, before it was not possible (to answer them). 
Now I can talk using the cane. —P2 

Another common situation that people report is needing to 
know the current time or location, especially when they are 
travelling. Here too, one needs both hands, if touching a tac
tile watch, or managing multiple swipes or strokes on a touch
screen to get the time or location. 

When I am traveling in bus, we are standing and it is easy 
to know the time and location using the cane. —P3 

Even though we did not intend the I-cane to be used in mo
tion, users mentioned that they can perform double-tap, right-
twist and left-twist while in motion. This can potentially help 
them attend to time-critical tasks. 

Earlier I had to take my phone from pocket and stand 
somewhere to pick up a call, but now I can answer it 
while walking. —P3 

One disadvantage with not having a visual interface to a 
smartphone is the time taken to react to a call due to the 
inability to glance at a ringing device. Moreover, when the 
phones need to be kept in a secure location, such as locked 
in a purse or in a secure pocket area, the reaction time in re
moving the device can be long enough to delay a timely inter
action. All users noted the benefit of I-Cane in being able to 
complete tasks without needing to physically handle a phone 
and deal with the touchscreen. 

Many times I would miss calls due to delay in accepting 
them. Now that does not exist. —P2 

Users found the cane to be useful even when one of their 
hands were free. 

In footpaths, even without any luggage in our hand, we 
have to stop and then remove the phone from our pockets, 
and then note the time. This makes people behind us to 
stop. Also, this is very long. With cane, we can know the 
time immediately. —P1 

Situational Awareness 
Locational awareness is a critical part of independent life. 
Our app logs indicate that all users frequently used the cane 



to query for location. In fact, all users explicitly mentioned 
liking the ability to query their location with a single gesture. 

In unknown locations, sometimes people won’t tell us 
correctly where we are, sometimes it’s hard to find peo
ple. With the cane, we can now know the location on our 
own. Before taking the phone out would take time. —P1 

Locational awareness may require reassurance or repeated 
checking within very short intervals. This is common for 
sighted people using mapping technologies (e.g., Google 
maps) in which one may glance at a screen several times as 
they move. Such repeated queries for location can be partic
ularly tedious for people with VI just using their smartphone 
UI. With I-Cane, the users were able to locate themselves 
quickly, and repeatedly. 

If I want to go from office to Parangipalya (neighbor
hood), sometimes I will get confused in the cross-streets... 
if I check the location it was saying intersection of 27th 
main and 18th cross. So I was able to easily find out I am 
in this particular cross and I can navigate well. —P3 

Cultural Conditioning 
We found that the notion of people with VI navigating on their 
own was still alien. This was true for users whose family 
members would often accompany them to various locations 
rather than allow them to travel on their own. While this was 
internalized as care on part of family members to ensure that 
they were not hurt, the net outcome was limited experience 
with outdoor spaces. 

Users also referred to the use of the cane as stigmatizing be
cause they identified one as being disabled. Consequently, 
there were entire days during which some of our users did 
not use the cane. As two users put it, 

I am a totally blind person and I cannot live without the 
cane ... yet when I am at home, my parents do not let me 
use the cane. —P3 

Stigma was related not just to the individual, but also to those 
around them by extension, since disability was sometimes 
seen as something embarrassing and therefore to be hidden 
from public view. 

My sister and mother do not allow me to use the cane 
when they are around me, as I was getting engaged. –P2 

Such issues of stigma are relevant to design decisions, since 
on one hand, there is a need for greater social awareness of 
disability as diversity, but there is also a need to consider the 
possibility that people with VI may find themselves forced to 
use devices or aids that do not reveal their disability to those 
around them. 

DISCUSSION 
In this section, we summarize insights that we gained dur
ing our study. We hope that these insights will guide future 
research that aims to design solution for a similar context. 

Safety of Gestures 
Among the five gestures, we felt that the double-tap gesture 
(tapping the cane to the ground twice) may create noise that 

may either disturb people in the vicinity or draw attention to 
the user. However, users mentioned that this was not a con
cern. On the other hand, one user mentioned that a “bigger” 
twirl could potentially hit someone or something in the imme
diate vicinity of the user. Given that these two gestures were 
the most popular among users, it seems like users adapted to 
performing these gestures in a safe and polite manner. 

Better Integration with phone OS 
One of the user wished that he could “operate all of the mo
bile” using gestures. This is possible by combining gestures 
with the native android accessibility app, i.e., TalkBack. But 
we believe that easier and faster access to certain frequent 
and time-critical tasks on smartphone might be a better appli
cation of GesturePod; we will study both these approaches in 
future work. 

Additional Functionality 
Android’s Google assistant requires an always-on micro
phone, which can drain the battery rapidly on low-end 
phones. In fact, one user mentioned that he would like one 
gesture to wake up the Google assistant. Similarly, another 
user wanted a mechanism to know the battery level of the 
GesturePod, so that they can charge the pod at an appropriate 
time. Our apps state machine can be extended to include these 
functionalities. Similarly, some users requested gestures to 
be mapped to an action of their choice (e.g., call a specific 
person). These requests suggest that a) users should be able 
to customize our Android app’s state machine, and b) users 
found the alternate functionality organization, that our cane 
enables, to be of great advantage. 

What about buttons? 
Our goal is to determine if gesture detection on white cane is 
technically feasible and practical. Our goal is not to conclude 
that gestures are the best mode of interaction for cane users. 
We suspect that creating a button-based cane in itself requires 
significant design exploration: how many buttons, location of 
buttons, mapping between buttons and actions, etc. Once de
ployed, unlike a software based gesture recognition system, 
a hardware based button system is not extensible. Further, to 
avoid false triggers, buttons have to be placed away from the 
place where the users hold the cane. This can be clumsy for 
users with VI and require them to locate/identify each button 
before performing any action (e.g., imagine different orien
tations of the cane). This challenge with buttons was high
lighted by users with VI in our interviews. However, note that 
gestures are complementary to buttons, and it is quite likely 
that a final solution may marry gestures with buttons. 

CONCLUSION 
We introduced GesturePod, an easy-to-use gesture-
recognition device that can be clamped on any white 
cane so that gestures of the cane can be used to access a 
smartphone. GesturePod is a touch free, low-cost (less than 
10 USD) plug-and-play device, that has a short learning 
curve, and does not require carrying around additional 
devices other than the cane. GesturePod’s real-time and 
power-efficient gesture recognition is enabled by a carefully 
engineered ML pipeline that runs entirely on a tiny micro-
controller housed inside the pod. Our in-lab and in-wild user 



studies suggested that 1) GesturePod can robustly recognize 
gestures across the wide range of environments recorded 
by our users, and 2) GesturePod could potentially improve 
access to smartphone for specific tasks. Both our results and 
qualitative feedback from the users suggest that, for persons 
with VI, performing gestures on the cane is a promising 
mode of interaction with their smartphone, especially in 
workplace or outdoors. 
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